

Erik Bartmann

Discover modulare

Synthesizer with

VCV-Rack 2

The Teensy MIDI Controller

2

Author Erik Bartmann

Internet https://erik-bartmann.de/

Topic The Teensy MIDI controller

Version 1.01

Date January 26, 2022

© 2022 by Erik Bartmann. All rights reserved.

This tutorial may be freely copied, distributed electronically and printed for personal use without

adaptation.

https://erik-bartmann.de/

3

Table of contents
 A Teensy MIDI Controller ... 4

The Teensy-Board .. 4

The installation of the development software .. 5

Step 1: The installation of the Arduino IDE ... 5

Step 2: The installation of the Teensy extension .. 5

Step 3: The first test of the Teensy board ... 6

The configuration as a MIDI device ... 8

The Teensy as MIDI controller ... 8

First MIDI test .. 9

A small MIDI controller .. 11

The Pin Layout of the Teensy 3.2 .. 12

The circuit diagram .. 12

The assembly on the breadboard .. 14

The Teensy Sketch ... 14

Testing the MIDI controller ... 16

Assign another MIDI identifier .. 18

A real test in VCV Rack .. 19

4

 A Teensy MIDI Controller

What is it all about?

The following topics are discussed in this paper.

• What is a MIDI controller?

• What is a teensy board?

• What is MIDI?

• The Teensy MIDI Controller

• The MIDIView program

• A test with the VCV Rack

When it comes to getting control of music software on the computer via external hardware, so-called
MIDI controllers come into play. This paper is about developing a rudimentary MIDI controller with a
microcontroller and some other components like pushbuttons, resistors and potentiometers.

The Teensy-Board
A large number of microcontrollers can be found on the market and especially in the hobby area the
Arduino board with its countless variants has become a quasi-standard. The included Arduino
development environment (Arduino IDE) enables even newcomers to find a suitable start without a
steep learning curve. But the board we are talking about now is not an Arduino board, but the so-
called Teensy board. It fits perfectly on a breadboard and is in many ways more powerful than a
standard Arduino board like the Arduino-Uno. The Teeny-Board is developed by Paul Stoffregen and
is optimal for building a USB-MIDI controller, because it is very easy to use and configure as a USB-
MIDI device.

5

Figure 1 The Teensy 3.2 on a breadboard

But let's approach the whole thing step by step.

The installation of the development software
I had just briefly mentioned the Arduino IDE, which provides a very easy introduction to

programming Arduino microcontrollers. However, there is another and crucial advantage. This IDE

can be extended via external software so that other microcontrollers can also be programmed via it.

This is also the case with the Teensy board. But of course the Arduino IDE has to be installed first.

Step 1: The installation of the Arduino IDE
The Arduino development environment for different platforms such as Windows, Linux and MacOS X

can be downloaded via the following link.

Hyperlink!

https://www.arduino.cc/en/software

After the simple installation, the second step is now to install the Teensy extension.

Step 2: The installation of the Teensy extension
The following link can be used to download the Teensy installation software.

Hyperlink!

https://www.pjrc.com/teensy/td_download.html

After the also very simple installation, a first test of the Teensy board can be performed.

https://www.arduino.cc/en/software
https://www.pjrc.com/teensy/td_download.html

6

Step 3: The first test of the Teensy board
Of course, the Teensy board must be connected to the computer via a suitable USB cable. After the

connection is made, the board is automatically recognized, so no additional driver is required. The

installation software of the Teensy extension for the Arduino IDE has all the necessary components

to start programming immediately. To begin, of course, you need to make sure that the correct

board is selected in the Arduino IDE. Since I am using the Teensy board 3.2, this looks like this. Under

the menu item Tools|Board this board has to be selected.

Figure 2 The Teensy 3.2 board is selected

The next step is to select the correct communication port via the menu item Tools|Port. Usually this

is the only port that is offered for selection there and a somewhat cryptic one and may also be

different from what I have shown here.

Figure 3 Der Teensy-Port ist ausgewählt

7

In the last step, the obligatory Blink sketch can be loaded for a first test. This is done via the menu

item File|Examples|Teensy|Tutorial1|Blink.

Figure 4 Loading the Blink Sketch

Der Sketch schaut wie folgt aus.

const int ledPin = 13; // LED-Pin

void setup() {

 pinMode(ledPin, OUTPUT); // Output-Pin

}

void loop() {

 digitalWrite(ledPin, HIGH); // LED on

 delay(1000); // 1 Sec. Pause (1000ms)

 digitalWrite(ledPin, LOW); // LED off

 delay(1000); // 1 Sec. Pause (1000ms)

}

After uploading the Blink sketch, a small Teensy utility will pop up to help you upload and launch the

sketch.

Figure 5 The Teensy Help Program

It may be necessary to press the small white push button on the board to effect a reset, but this is

not usually required. After the upload has been completed, a small light emitting diode (LED) on the

8

Teensy board should start flashing every second. If this is the case, everything has obviously been

done correctly and is a sign that the communication between the computer and the microcontroller

board is working fine.

The configuration as a MIDI device
The Teensy board should appear as a MIDI device and for this a special configuration is necessary.

This is selected under the menu item Tools|USB-Type|MIDI.

Figure 6 The correct USB type

The Teensy as MIDI controller
Now it's time to move on from the simple Blink sketch and do something about MIDI. MIDI is a digital

interface for musical instruments and stands for Musical Instrument Digital Interface. More details

can be found in a special tutorial "What is MIDI?" on my website.

Hyperlink!

https://erik-bartmann.de/userfiles/downloads/Musik/VCV-Rack/EN_MIDI.pdf

Also here a first test can take place, because it should be ensured that also everything runs in correct

ways. This MIDI test consists of two parts, where the first one should show how the sent MIDI

information looks like on the lowest level and in the second part something can be heard.

https://erik-bartmann.de/userfiles/downloads/Musik/VCV-Rack/EN_MIDI.pdf

9

First MIDI test
For the first MIDI test, a suitable software must be installed to display the MIDI information. This

software is freely available, is called MIDIView and can be obtained from the following link.

Hyperlink!

https://hautetechnique.com/midi/midiview/

It is a so-called monitor program that displays all sent MIDI data. But more about that later. First of

course a suitable Teensy sketch must be programmed, so that something can be seen and later

heard. The Teensy board should now send standard MIDI messages. Sounds a bit strange, doesn't it?!

Quite simple! Such a message can for example look like that a note should be played and then fade

away. This is called in detail

• Note on

• Note off

Such events are of course supported in Teensy MIDI programming. They are

• usbMIDI.sendNoteOn(note, velocity, channel);

• usbMIDI.sendNoteOff(note, velocity, channel);

The three arguments when calling such a method (methods are actually functions and are so called in

Object-Oriented Programming) have the following task.

• note: Pitch

• velocity:

• channel: the used MIDI channel

Now you can very easily extend the used Blink Sketch with these two methods to play a note and

then not again.

const int ledPin = 13; // LED-Pin

void setup() {

 pinMode(ledPin, OUTPUT); // Output-Pin

}

void loop() {

 digitalWrite(ledPin, HIGH); // LED on

 usbMIDI.sendNoteOn(48, 99, 1); // Note on (C2 / C3)

 delay(1000); // 1 Sec. Pause

 digitalWrite(ledPin, LOW); // LED off

 usbMIDI.sendNoteOff(48, 0, 1); // Note off (C2 / C3)

 delay(1000); // 1 Sec. Pause

 }

It can be seen that when a note is muted, the velocity value 0 is simply used, meaning that the key is

not struck at all on a keyboard. So the following line could also have been used.

https://hautetechnique.com/midi/midiview/

10

...

 usbMIDI.sendNoteOn(48, 0, 1);

 ...

The Sketch reacts as before that further the small LED flashes every second, but now also in this

interval the two messages Note on and Note off are sent over the methods mentioned. A look into

the program MIDIView shows the following continuous messages.

Figure 7 The MIDI messages in MIDIView

In the Message column you can see that the note with pitch C2 was recognized. In the corresponding

Teensy sketch, however, I wrote C2 and C3 respectively as comments. Why this difference of one

octave? The reason is that there are different standards, which actually contradicts the standard to

be a standard. Confusing, isn't it? There are two standards, with the so-called Middle-C being C3 at

Yamaha and C4 at Roland. So the MIDI note value used in the sketch, which is given as 48, represents

the pitch C2 with a frequency of 130.81Hz. I prepared a VCV rack patch for this, using NYSTHI's HOT

TUNA plugin to display both the frequency and the detected note in it. But I'll talk about this patch in

more detail.

Figure 8 The VCV rack patch for displaying note and frequency

11

A small MIDI controller
Now we come to something that can really be brought into real operation. It is about a very simple

MIDI controller, which is equipped with four push buttons and two knobs. This can of course be

expanded as desired. I think this little project makes you want to do more. Let's get started. For this a

bit of theory, which can be read in detail in the tutorial "What is MIDI?" on my website. There are

eight different categories or command types in MIDI, as you can see in the following table.

Command type Status-Byte (binary) Status (hex)

Note off 1000 nnnn 8n

Note on 1001 nnnn 9n

Poly Pressure 1010 nnnn An

Control Change 1011 nnnn Bn

Program Change 1100 nnnn Cn

Channel Pressure 1101 nnnn Dn

Pitch-Bend 1110 nnnn En
Table 1 MIDI command types

The first two were already used in the first MIDI test, which is used to send notes. But now there is

the command type Control Change (CC), which is there to modify any parameters of a synthesizer

(modulation). This can be the case, for example, when the pitch or the cut-off frequency is changed.

This is then usually done via knobs, which now come into play. The planned MIDI controller should

therefore have buttons for controlling the pitch and pots for adjusting various parameters, as can be

seen schematically in the following illustration.

Figure 9 The controls of the MIDI controller

If one of the four keys is pressed and released again, a corresponding note on or note off command

with a certain pitch and velocity value is to be sent. The situation is similar for the knobs. There the

respective position is to be determined, in order to use this then for the manipulation of a desired

parameter. So that MIDI information is not sent continuously, in the end it only happens when a

value really changes. Especially with the potentiometers this is a problem I will come to. Regarding a

control change it has to be mentioned that it has to be identified in a MIDI controller of course. After

all, it should be clear which knob was moved at all. For this reason, certain CC-IDs are assigned to

these elements. For our project these are the following values.

Figure 10 The CC-IDs of the two potentiometers

The mentioned controller elements, i.e. pushbuttons and knobs, must now be connected to the

Teensy board in some way. For this purpose, it should be clear beforehand which individual

connections on the board have which functions.

12

The Pin Layout of the Teensy 3.2
Let's now take a closer look at the so-called pinout of the Teensy 3.2, where I more or less limit

myself to the pin groups required for the project.

Figure 11 The simplified pin-out of the Teensy 3.2

It can be seen that basically there are two different pin groups. On the one hand the analog pins for

measuring continuous voltage values, which are supplied via the rotary controls, and the digital pins

for querying whether a button is pressed or not pressed.

The circuit diagram
For the two rotary controls I will use the analog pins A0 and A1 and connect the push buttons to the

digital pins 0, 1, 2 and 3. Let's have a closer look in a circuit diagram that shows all electrical

connections.

Figure 12 The circuit diagram of the MIDI controller

I would now like to address a problem that I had already briefly mentioned with regard to the knobs.

MIDI information should only be sent when a value changes. Let's assume that there is a resistance

value of 500Ω at a potentiometer. This is then converted by the program into a corresponding

voltage value and processed further. A corresponding MIDI information is sent. If this value does not

13

change, because the position of the knob is no longer changed, no further MIDI transmission should

take place. Now, however, a potentiometer has the property that it always swings back and forth

between two resistance values due to mechanical properties or small contaminations, perhaps at the

current position, which is called jitter. So the continuous measurement results are, for example,

500Ω, 501Ω, 500Ω, 499Ω, 500Ω, etc. Of course, this leads to the program thinking that the knob is

constantly being moved and as a result continuously sends unwanted MIDI information. Now you can

try to get this under control programmatically. In addition, however, I advise a small extension in the

form of a so-called low-pass filter, which can also be seen in the schematic and was realized by the

additional resistors and capacitors. Here is the schematic of a potentiometer with downstream low-

pass filter.

Figure 13 The low pass filter - outlined in red

This filter causes a derivation of the signal to ground (GND) in case of very fast changes, so that they

are not passed on to the analog input and only low frequencies can pass. The mechanical

pushbuttons also have an unpleasant side effect. They can emit several logical levels in succession for

a short time instead of just one when closing and opening the contact. This behavior is called

bouncing and is compensated by a corresponding library. Now let's have a look at the construction

on a breadboard.

14

The assembly on the breadboard
With the mentioned components and the clear wiring, the assembly on a breadboard is very quickly

implemented.

Figure 14 The MIDI controller on a breadboard

The required components are.

• Teensy 3.2

• Breadboard 1x

• Micro pushbutton 4x

• Potentiometer 10K linear 2x

• Resistors 10K 2x

• Capacitors 10µ 2x

• board rest + pin headers (only if desired)

• Cable

The Teensy Sketch
The starting point for the realization is an example sketch, which is located at the following menu

item of the Arduino IDE.

File|Examples|Teensy|USB_MIDI|Many_Button_Knobs

This sketch was modified by me to work with respect to 4 pushbuttons and 2 knobs. I do not show

the sketch here in its full length, but only the modifications.

Determination of the number of analog and digital pins:

...

const int A_PINS = 2; // number of Analog PINS

const int D_PINS = 4; // number of Digital PINS

 ...

Definition of the analog input pins and the control IDs of the potentiometers:

 ...

 const int ANALOG_PINS[A_PINS] = {A0, A1}; // analog Input-Pins

 const int CCID[A_PINS] = {21, 22}; // Control-ID

 ...

15

Defining the digital input pins and the MIDI note values:

 ...

 const int DIGITAL_PINS[D_PINS] = {0, 1, 2, 3}; // digital Input-Pins

 const int note[D_PINS] = {60, 61, 62, 63}; // MIDI-Note-Values

 ...

Determination of the analog input pins with regard to the minimization of the jitter effect:

 ...

 ResponsiveAnalogRead analog[]{

 {ANALOG_PINS[0],true},

 {ANALOG_PINS[1],true},

 {ANALOG_PINS[2],true},

 {ANALOG_PINS[3],true}

 };

 ...

Definition of the digital input pins for debouncing the keys:

 ...

 Bounce digital[] = {

 Bounce(DIGITAL_PINS[0],BOUNCE_TIME),

 Bounce(DIGITAL_PINS[1], BOUNCE_TIME),

 Bounce(DIGITAL_PINS[2], BOUNCE_TIME),

 Bounce(DIGITAL_PINS[3], BOUNCE_TIME)

 };

 ...

These changes mean that the sketch is now matched to the hardware and cabling used. After

uploading the sketch, a first MIDI controller test can be performed using the MIDIView program.

16

Testing the MIDI controller
After starting MIDIView and selecting the Teensy MIDI controller with the name TEENSY MIDI the

test can be started. At the beginning the message window should be empty and there should be no

MIDI information running up there.

Figure 15 An empty MIDIView window

Now I will press the keys one after the other from left to right and see what is happening in

MIDIView.

Figure 16 The MIDI messages of the 4 buttons

It is wonderful to see that there is both a note on and note off event per button and that the MIDI

note values defined in the Sketch are interpreted here. These were the values defined via the

following line.

 ...

 const int note[D_PINS] = {60, 61, 62, 63}; // MIDI-Note-Values

 ...

17

The following table shows the MIDI values and the corresponding notes, where I marked the used

MIDI values in red.

Octave Notes

C C# D D# E F F# G G# A A# H (B)

-2 0 1 2 3 4 5 6 7 8 9 10 11

-1 12 13 14 15 16 17 18 19 20 21 22 23

0 24 25 26 27 28 29 30 31 32 33 34 35

1 26 37 38 39 40 41 42 43 44 45 46 47

2 48 49 50 51 52 53 54 55 56 57 58 59

3 60 61 62 63 64 65 66 67 68 69 70 71

4 72 73 74 75 76 77 78 79 80 81 82 83

5 84 85 86 87 88 89 90 91 92 93 94 95

6 96 97 98 99 100 101 102 103 104 105 106 107

7 108 109 110 111 112 113 114 115 116 117 118 119

8 120 121 122 123 124 125 126 127
Table 2 MIDI note values

You can see that these are the notes C, C#, D and D# in the 3rd octave, which can also be seen in the

MIDI view. Then let's see how the two knobs show up. First I move the left one a little bit to the right,

which was in the left stop at the beginning.

Figure 17 The MIDI messages of the left knob

The two knobs have been defined with respect to their CC-IDs as follows.

 ...

 const int CCID[A_PINS] = {21, 22}; // Control-ID

 ...

And exactly this ID 21 is to be recognized also in the MIDIView in the column Messages. In addition,

of course, the detected value is displayed, which can range from 0 to 127. I will now do this with the

right knob, which was in the right stop at the beginning and is now slowly turned to the left.

18

Figure 18 The MIDI messages of the right knob

The ID 22 is displayed in the MIDIView with the corresponding value. So everything runs exactly as it

was defined before in the Sketch.

Assign another MIDI identifier
In the program MIDIView you could see that our MIDI controller identifies itself with the name

TEENSY MIDI. This is a predefined identifier by Sketch, but it can be customized very easily if desired.

A corresponding example can be found under the following menu item.

File|Examples|Teensy|USB_MIDI|MIDI_name

The procedure is the following.

Step 1: Add a new tab named name.c to the Sketch.

Step 2: Insert the following code.

#include "usb_names.h"

#define MIDI_NAME {'E','r','i','k','\'','s',' ','M','I','D','I'}

#define MIDI_NAME_LEN 11

// Do not change this part. This exact format is required by USB.

struct usb_string_descriptor_struct usb_string_product_name = {

 2 + MIDI_NAME_LEN * 2,

 3,

 MIDI_NAME

};

The name I want is to be Erik's MIDI and was defined via the MIDI_NAME array in the form of single

letters. The length of the array has to be adjusted in the next line, of course. So just count the

number of letters and store them there as value. After the upload this new name will appear in

MIDIView for selection.

Figure 19 The new MIDI name

19

A real test in VCV Rack
With so much theory, it is certainly appropriate to test the MIDI controller in a real environment. Of

course, the VCV Rack is a good choice again. I have prepared the following patch for this.

Figure 20 The VCV rack patch for the Teensy MIDI controller

Which VCV Rack modules are necessary for this? Well, this is in any case the left module with the

name MIDI-MAP. There it comes to an assignment of a MIDI controller control to a VCV-Rack control,

which is done by the so-called mapping. I have created a special video for this. Via the two knobs on

the MIDI controller it is now possible to influence the two knobs FREQ and WT POS on the WT VCO

module.

Figure 21 The knobs influence the WT-VCO module

Of course, the four keys can also be used to change the pitch accordingly within very narrow limits.

This example serves only as a small introduction to the topic of MIDI controllers and I hope that it

helps to achieve an inspiring effect.

20

More information can be found on my website.

Hyperlinks!

https://erik-bartmann.de/

https://erik-bartmann.de/?Musik___VCV-Rack

Happy Frickeling!

Erik Bartmann

https://erik-bartmann.de/
https://erik-bartmann.de/?Musik___VCV-Rack

	A Teensy MIDI Controller
	The Teensy-Board
	The installation of the development software
	Step 1: The installation of the Arduino IDE
	Step 2: The installation of the Teensy extension
	Step 3: The first test of the Teensy board

	The configuration as a MIDI device

	The Teensy as MIDI controller
	First MIDI test
	A small MIDI controller
	The Pin Layout of the Teensy 3.2
	The circuit diagram
	The assembly on the breadboard
	The Teensy Sketch

	Testing the MIDI controller
	Assign another MIDI identifier
	A real test in VCV Rack

